

CONTENTS

01

BRINGING WATER HERITAGE BACK TO FOREFRONT KEY TO ACHIEVING SUSTAINABILITY IN WATER

Dr. Deeksha Katyal ,Guru Gobind Singh Indrappastha University , Delhi , India

04

02

Ancient Roman channels in Campania (Italy): Issues of structural maintenance and drainage efficiency

Maria C Monteleone Daniele De Simone Graziano W Ferrari

10

03

A Historical retrogression of the ancient Greek water and wastewater technology in Greece

Prof. Dr Ioannis Kalavrouziotis President of Hellenic Open University School of Science and Technology, Hellenic Open University

20

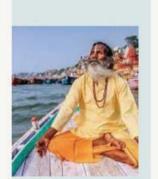
04

A "Living" Water Conservancy Cultural Heritage Museum in the Summer Palace

Wang Shubiao 43

05

Water civilization in early China


Niu Zhiqi 74

BRINGING WATER HERITAGE BACK TO FOREFRONT

KEY TO ACHIEVING SUSTAINABILITY IN WATER

Dr. DEEKSHA KATYAL , GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY , DELHI , INDIA

WATER HERITAGE OF INDIA

- 1. CULTURAL BELIEFS ON WATER
- 2. TRADITIONAL WISDOM ON WATER CONSERVATION
- 3. WATER TREATMENT METHODOLOGIES ACCORDING TO

ANCIENT INDIAN TEXTS

AYURVEDA MEANING KNOWLEDGE OF LIFE (VITAL POWER)

Ayurveda describes all existing bodies as:

- a) Macrocosmic : Universe
- b) Microcosmic: Individual body

All macro/micro cosmic bodies are made up of five elements called Panchmahabhutas viz. Akash (Ether), Vayu (Air), Agni, (Fire), Aap (Water), and Prithvi (Earth).

THE VEDIC PHILOSOPHY

FOUR VEDAS : a) Rig Veda b) Yajur Veda

c) Sam

d) Atharva Veda

All the Vedas describe about the qualities of water in some form:

Rig Veda: Pure water cleans our body like mother. It makes us sacred with particles of energy present in it . It drains all pollutants and makes the man pious and energetic. (Rig Veda 10/17/10)

Chandogya Upanishad (Part of Sama Veda)

When we drink water, it becomes divided in three parts. The grossest part of it becomes urine; that which is less gross becomes blood; and the finest part becomes prāna, the vital force (Verse 6.5.2). It discusses the metaphor of water in relation to the self (Atman)

That's the emphasis that was put onto the nature of water and the thought with which it is consumed by scriptures which some say were written around 6000BCE.

Water was recognized on the basis of its taste (rasa), look (rupa), touch (sparsha) & smell(snigdha)

Six tastes which were: a) Madhura (sweet), b) Amla (sour), c) Lavana (salty), d) Katu (pungent), e) Tikta (bitter) and f) Kashaya (astringent).

Even various principles of taking water are defined (Jalpan Niyam)

- a) Two parts of the stomach should be filled with solid foods, one part by liquids, and one part should be kept vacant for air.
- b) It is recommended that water be taken half an hour prior or after meals (preferably sitting). Food during or immediately after meals should be avoided
- c) While cold water is preferred during exhaustion,
 fainting, giddiness or alcohol intoxication,
 warm water is preferred for stimulating hunger,
 digestion, throat infections, flatulence and digestion

Rituals depicting the significance of water:

- a) Purification and Cleansing: Since water is considered as a purifying element, it is mandatory to cleanse the body before engaging in prayers or other religious activities. Before entering a temple or performing worship at home, we typically wash our hands, face, and feet.
- b) Offering: 'Abhishekam' which means offering water along with milk honey, yogurt, and ghee, to deities is a form of worship which invoke the blessings and divine grace of the gods.

- c) The Holy Rivers: As discussed earlier, water is associated with creation, as it is believed to be the element from which life emerged. Thus, rivers are considered extremely sacred(especially, Ganges) and taking a dip in these rivers is believed to cleanse one of sins and bring spiritual merit.
- d) Holi and Water Festivals: The festival of Holi is celebrated with great enthusiasm in India and involves the playful throwing of colored water. It is generally seen as a celebration of the arrival of spring and helps foster community bonds.(cont.)

Kua Poojan: Kuan Poojan ceremony is an auspicious ritual performed during marriage festivities and also after the birth of a child. Family and friends worship the place that is the source of their drinking water (in earlier times, a well) and pray for the well-being of the family

Moksha and the Waters of Liberation: Since our ultimate goal is to achieve liberation (moksha) from the cycle of birth and death (samsara), water forms an important pat of our cremation too. Death is often metaphorically described as a state of merging with the divine, like a drop of water merging with the ocean. Water is used as a symbolic representation of this concept.

The emphasis on water in ancient Indian texts achieved several significant outcomes and impacts on Indian culture, society, and spirituality. Since these practices and beliefs have been passed down through generations, it has contributed to a sense of continuity and unity among diverse communities. Water is used as a metaphor to convey complex spiritual and metaphysical concepts, aiding in the contemplation of the nature of reality and the self. The reverence for water has contributed to the preservation of historical sites like temples, ghats and heritage associated with sacred rivers and water bodies. The recognition of water's role in agriculture has also led to a drive and desire for agricultural sustainability and food security in India. The emphasis on

Meeting the Honorable Prime Minister of India , Shri Narendra Modi

NAMASKAR

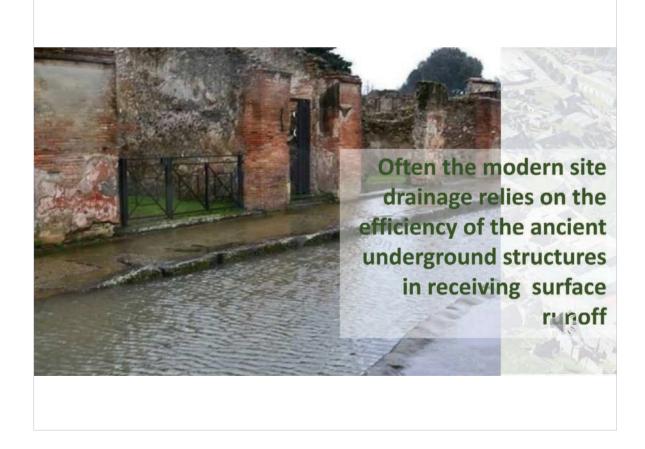
FOR QUERIES : deekshakatyal@gmail.com deekshakatyal@ipu.ac.in

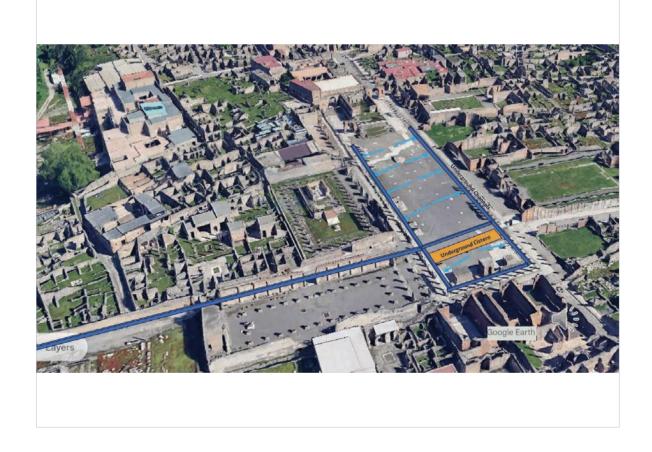
Ancient Roman channels in Campania (Italy): Issues of structural maintenance and drainage efficiency

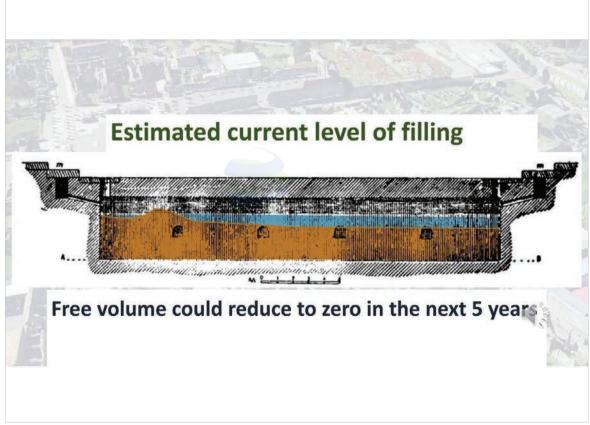
Maria C Monteleone Daniele De Simone Graziano W Ferrari

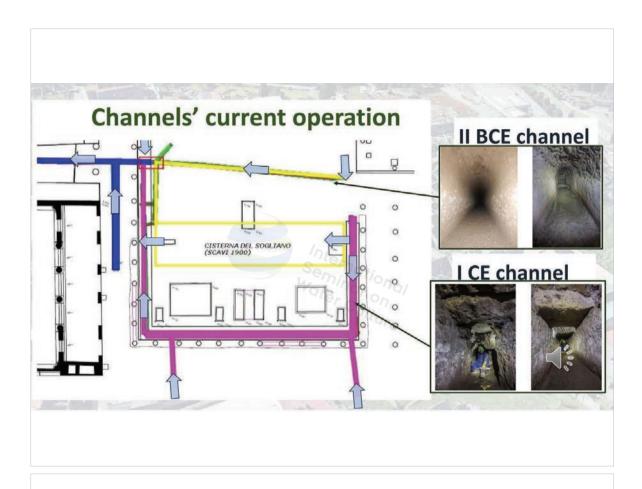
Maria C Monteleone is an independent researcher in ancient Roman hydraulic structures since 2006, recently collaborating at Northumbria University (UK) Ancient Water System Group

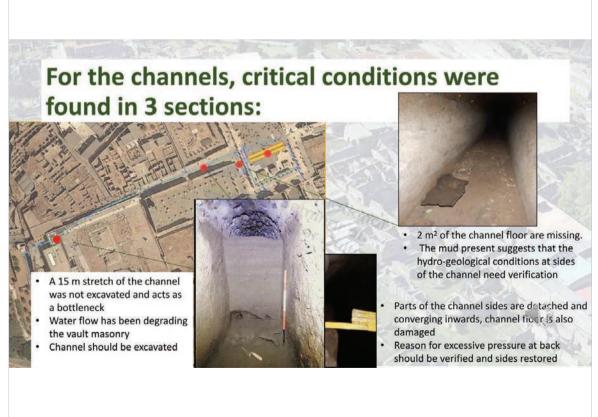
Daniele de Simone is an archaeologist collaborating with the Italian Cultural Heritage ministry in Naples, as well as various research institutions such as Aix-Marseille (FR) and Salerno University (IT)

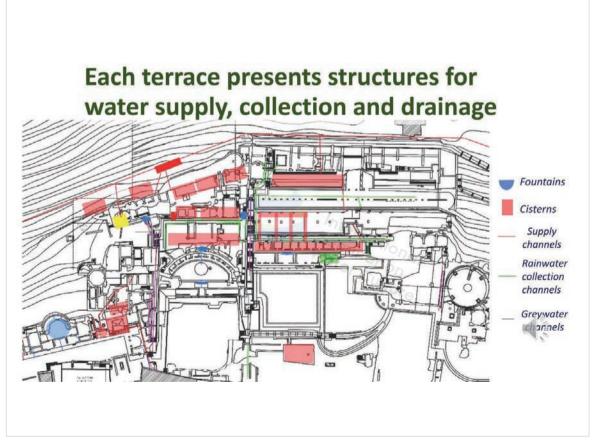

Graziano W Ferrari is the director of the speleological association 'Cocceius' in Naples (IT), for many years collaborating with Cultural Heritage officers to the exploration of various underground ancient structures





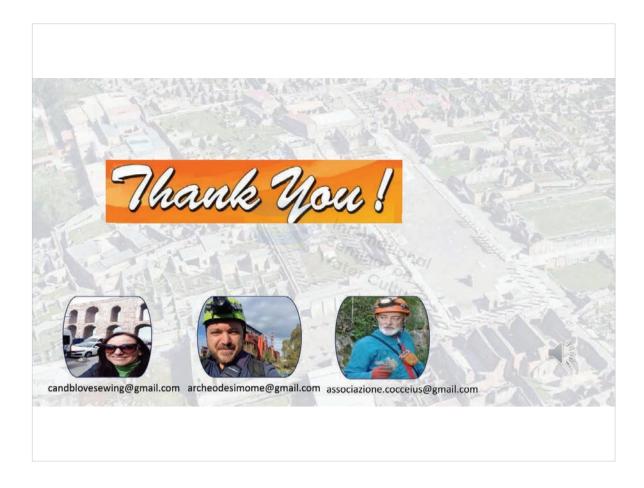


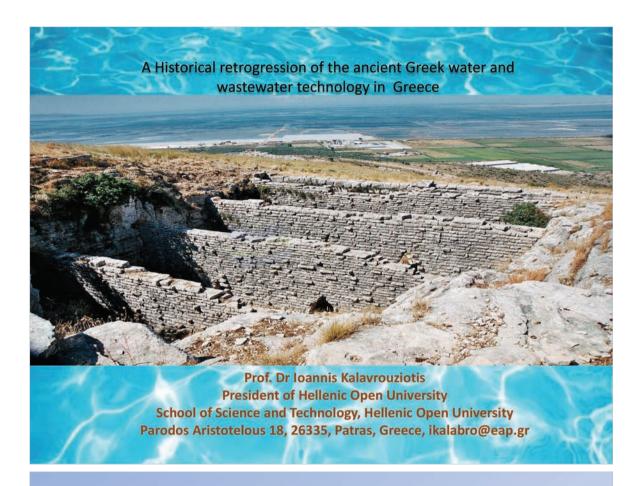




Improvement achieved with grates & gullies clearing

Conclusions


- Exploration of ancient drainage channels reveals a complex situation, due to their conditions and functionality
- Funding is needed to assess the hydraulic operation and verify the presence of structural and geological faults
- The proposed actions have to find a good agreement between:

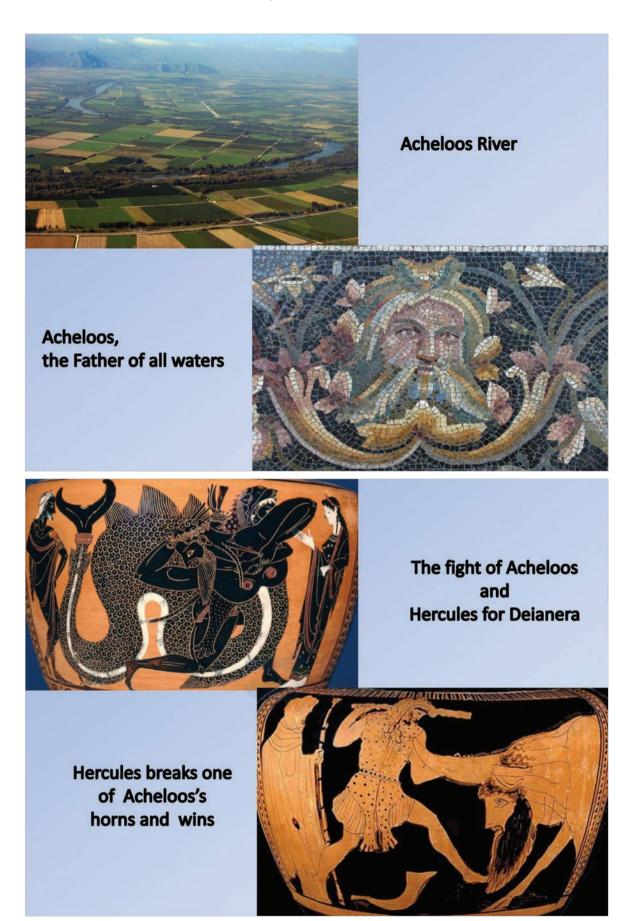

Conservation

(Application of various methodologies to reduce and prevent the deterioration of the structures in time)

Maintenance

(continuous, structured activities aiming to maintain the desired functionality of the say)

In Greece, systematically organized wastewater drain networks have been found since 3000 BC.


Minoans and Indians are considered the precursors of designing and constructing wastewater disposal networks.

In later times Greeks and Romans further improved the technology of the wastewater management

Ancient Greek philosophers Anaximenes (585-525BC, Hippon 5th Century, Empethocles 493-433BC, Aristoteles cetc had a good conception of the hydrologic cycle and its related phenomena.

This knowledge based on logical reasoning and observation constituted the basis for designing and planning a series of monumentous hydrawlic constructions an some of them being still in operation

The ancient Greeks, considered the water as being a "divine gift" of Gods.

The first attempt to manage the water use in crop irrigation was made in Mesopotamia and Egypt during the Neolithic era i.e. 6000 to 7000 years ago Water technology in Greece started around 2000 BC and only in 600BC the development of views by the Greek philosophers about the scientific history of natural phenomena in which the hydrological and meterological aspect, had an important role.

Also, the first constructions for the transfer of potable water were made in in Eastern Crete, during the Neolithic era.

Apart from the construction of small cisterns for maintaining the water quality by means of settlement of suspended particles, the Minoans of Knossos were using loam filters and special structures filled with charcoal. Such filters were found in Aghios Mamas in Crete.

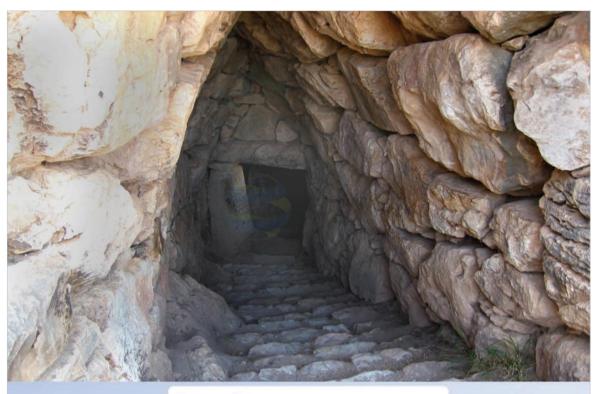
In the Minoan Crete the rainwater was collected and stored in special cisterns. On the other hand, they were managing the water by means of various hydrological constructions such as: aqueducts, water collection systems, rain water cleaning and storing constructions, deep wells, cisterns and fountains).

In Crete, due to the dry climate, the water management included a wide system of rain water collection.

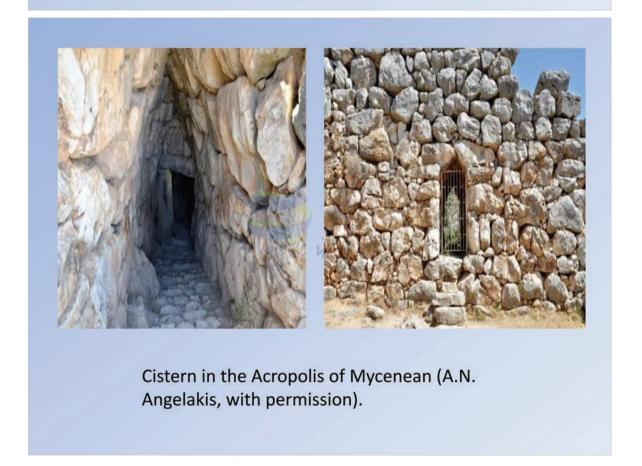
Rain water system in Saint Triad (A.N. Angelakis, with permission).

Rain water system in Knossos (A.N. Angelakis, with permission).

The engineers of the Minoan Crete applied extensively the principle of the "communicating vessels" at constructing water distribution and transfer networks.


In Knossos, during the Roman times, the water was transferred by means of an underground tunnel of 1150m length.

Such tunnels were found in Malia of 1900m length, which was being used for water transfer, also in ancient Tylisos an underground tunnell of 1400m length was operated.


The technological knowledge for the water transfer by means of tunnels was also very advanced and was applied in many parts of Greece, as well. This knowledge allowed also the construction of small dams, canals, pipe ducts, and cisterns in the Aegean islands during the Cycladic period (3100-1600 BC). Similarly technologies were also applied in the continental Greece during the Mycenaean period (1600-1100 BC).

The Mycenaean Civilization

An important hydraulic structure of this period was the underground cistern in the Acropolis of Mycenae, which supplied the networks with water through a huge rock. This was indeed a miraculous structure before 33 centuries, which could be compared with modern systems of water supply of cities.

The Athenians also constructed a cistern within a rock of Acropolis for water storage.

In Athens the archaeologists found a pelagic aqueduct, which was constructed most probably before the appearance of Theseus. The aqueduct was made of closed cyclic ducts, and it was extending along a large distance from the site of Kesariani to the side of Philopapou hill.

Another old aqueduct of Athens was that of Theseus which was constructed in 3090 BC and transferred the water up to the western side of the mount Pendelis.

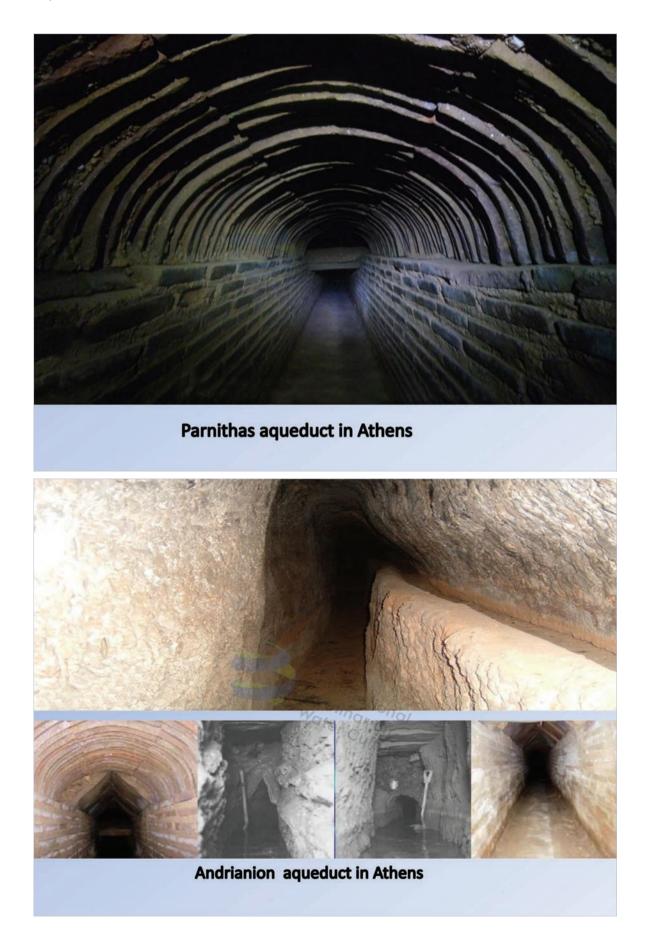
The hydrological know-how in ancient Greece

Ancient Greek philisophers knew very well the details of the hydrologic cycle. Though this knowledge had been ignored by the modern Societies, only during the 17th century they started paying attention.

Among the many hydrauclic constructions, a notable one was built during the Mycenaean period. It is a dam with a height of 2-5 meters and 250m to 5000m of length. The volume of water that could be stored was about 2-250 million m³. This water was used for the irrigation of agriculture crops.

After 700 BC the evolution of commerce created favorable conditions which led to the rapid development of Athens, and consequently the hydraulic works started expanding. Thus deep wells, cisterns, fountains and canals were constructed and public networks for water distribution were made including deep wells, water sources, and many private structures leading to optimum water management.

Some of these monumentous hydraulic constructions, that is, dams, are given below


During the Archaic period (750-480 BC) and the classical period (480-333 BC) in inland Greece hydraulic structures similar to those of the Minoan period, such as the Pissistratio aqueduct in Athens (510 BC), which had a length of 2800 m, of which 270 m were within a dome.

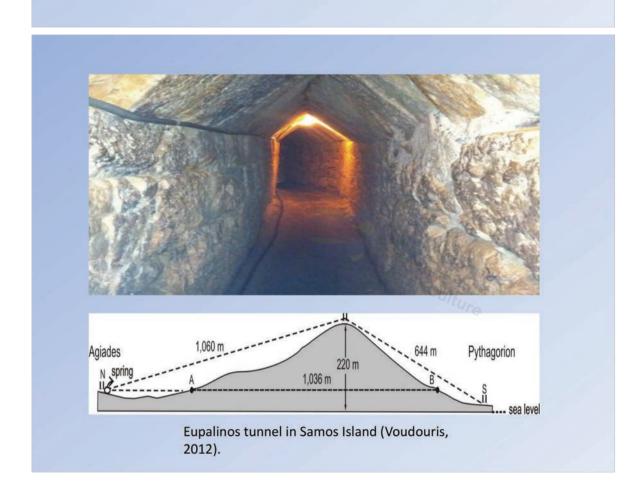
Also, within the city of Athens many hydraulic structures were constructed such as fountains, water transfer networks, wastewater drain networks, fountains, aqueducts.

Laws were passed by the tyrant Solon for the effective management of water resources.

Pissistratio aqueduct, Athens, (510 BC) (N. Mamasis, with permission).

Andrianion aqueduct in Athens

The basic principles taken into account in constructing hydrological structures in ancient Greece


Some basic principles which were applied by the ancient Greeks in relation to constructing the hydraulic structures were:

- 1. The economy in regard to the use of the material destined for construction
- 2. The means used for accomplishing the aim set forth. Their main scope was to exploit the rain water as effectively as possible.
- 3. The methods used were friendly to the environment.
- 4. The structures made, were enforced so as to resist the effect of time and to last as many years as possible.
- 5. The construction of the structures ought to be friendly towards the environment and to be long lasting, contrary to the modern hydraulic structures which last only 50 years.

This period was characterized by an advanced level of hydrological knowledge of ancient Greeks, which contributed to the construction of the well-known Eufpallian aquiduct (tunnel) in the Aegian island of Samos. In fact, this was the first deep tunnel ever made in history. Its construction started from the two ends (edges) of a hill and the tunnels made, were connected with mathematical accuracy. This connection was made at the center of the hill. The technology used was based on the Euclidian geometry.

A general rule which was applied at this period for the water transfer was that the ducts must have a slope of of-2% so that the water to be moving and transferred by means of the effect of gravity.

Also the technology of siphons was used to transfer the water upward, i.e. to higher level via closed pipes.

The hydrological know how of ancient Greeks contributed to the construction of the Characteristic aqueduct of Nikopolis, which had a length of 50 km. It was indeed an amazing hydrological construction made to cover the water needs of this town by transferring the water to Nikopolis from the water sources of St. George in 30 BC, located 50 km away from Nikopolis.

The aqueduct was a complex structure of 50 km including an aerial system for water transfer in order to overcome a canyon of Louros and continued by a tunnel through hill, up to the village Archangelos crossing the village Samsuda and Kanali of Preveza and finally transferring the water to Nikopolis.

The hydrological know-how in ancient Greece

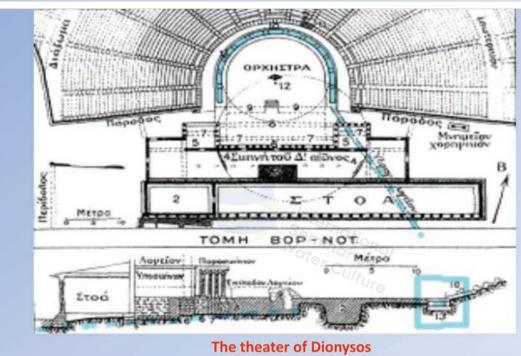
Another long aqueduct was constructed during this period in the island of Lesvos (Mytilini) in having a length of 22 km.

Similarly, significant hydraulic structure of this period is the "Andrianion Aqueduct" of 500 m3 capacity and length of 25 km. This aqueduct is underground throughout it length. It transfers the water from the mountain of Parnitha.

The Andrianion Tunnel

An important aqueduct was also constructed in the town of Philippi of Kavala with 8 km length. It was made with clay flagstones. The wails and the bottom were covered by lime stones mortar, which was also covered by hydraulic stucco. The dimensions of the tunnel were 0.96m width and 1.35m height. The cross section of the duct was square.

Ancient Makyneia, Aitoloakarnanias, photo of the stone drain system (Kollyropoulos et al., 2017)



Dionysus theater; details of drainage channel (images by K. Kollyropoulos): (a) view next to orchestra; (b) view of channel exit under stage of theater; (c) view of downwards flow of channel (Kollyropoulos et al., 2015)

The Blue colour represents the wastewater drainage system of the theater
The doted line indicates the covered section of the drainage system.
(Kollyropoulos et al., 2014).

Drain systems during the Roman Period

In the Roman Period the drain discharge systems were further improved. The houses had perpendicular drains incorporated into the walls, via which the wastewater was transferred into the central drain system which was underground and led the wastewater into the sea.

The rain water during the Roman time was collected along with the surplus of the water of fountains, and was used for the irrigation of urban gardens or it was removed via the drain system, while at the same time it cleaned the drain ducts, thus protecting human health from diseases.

In Patras during the Roman time the domestic wastewaters were crossing underground central roads via built ducts or clay pipes, discharging the wastewater into the sea. Even today there are sections of the drain network, which are still in function. Also, at the same time, public toilets were constructed to serve peoples' needs.

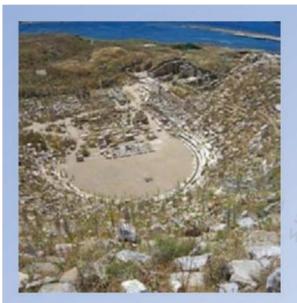
Patras Roman aqueduct

Ancient Pleurona, Aitoloakarnania : The Great Cistern (Diamanti and Kalavrouziotis, 2013)

Water reservoir in Makyneia, Aitoloakarnanias, (Kollyropoulos e al., 2017)

Toilets and drain systems

The ancient Greeks being experienced hydrologists, had forseen the need of construction of public toilets and constructed them in such a way so as to have four or more seats (places) as shown in the toilet of Amorgos. The waste waters were removed via a ditch, which was connected to the main canal being constructed parallel to the South wall of the toilet.


Public toilets have been found in the island of Delos, in Athens, in Roman markets (Agora), in the drain of Attalos, in island of Kos, in Philippoi and in Epidaurus.

A characteristic example of theater was that of the island of Delos which was constructed in 314 BC.

Hellenistic Period

During this period great progress took place in relation to the knowledge of hydraulic structures technology, which led to the improvement of hygienic bathrooms and toilets.

Generally the ancient theaters of Greece were constructed in such a way so as to include a drain system for the collection of rain water and its effective management.

The ancient theater of Delos with the part of sewage (Kollyropoulos et al., 2014).

Ancient Greek and present world water technology

Based on the above mentioned, an important question may arise regarding the relation between the ancient Greek and the present world water technology. Is it worth to study the ancient water technology?

The comparison of the ancient Greek civilization hydraulic technology with the contemporary world technological achievements provides an excellent example of motivation for environmental and conservation issues of our present time.

A number of Greek ancient technological developments are still in use. Similarly, such developments accomplished in other regions of the world are still in practice in Africa, India, Iran, Jordan etc.

Ancient Greek and present world water technology

Considering the ingenuity of the Greek Technology related to the solution of hydraulic problems, Greeks apart from the cisterns, clay pipes, drainage systems open and underground, fountains, aqueducts toilet and sanitary systems, rain harvesting and similar developments, along with other civilizations of the ancient world, they especially invented many hydraulic devices, making easier the handling of the water and of the fluids.

Ancient Greek and present world water technology

The hydraulic devices the ancient Greek ingenuity has produced some important devices for water lifting (pumps) being used in some countries until the present time. Some examples of representative hydraulic devices are given below

- a- The Kilonion (Shantur): An ancient system for water pumping (invented by in Mesopotamia and reproduced by the Greeks).
- b- The hydraulic endless screw of Archimedes: A mechanism for pumping water with small difference in height, still used today for transposting fluids and granular material.
- c- The hydraulic wheel of perahora: A machine used in the 3rd century for pumping water, discovered in the Village of perahora of Korinthos, Greece. (It is considered the most ancient water pumping device).
- d- The subdivided wheel of Philon: A water pumping machine (device) of small difference in height.

Ancient Greek and present world water technology

- e- The sub-divided wheel of Philon (variation of Polykadia)
- f- The chain pump of Philon A popular machine for water pumping of large differences in height used until recently.
- g- The piston force pump of Ktersibios: A force piston pump used for fluids, invented by Ktesibios in the 3rd century and its use till the present time extensive innovated in various ways.
- h- The fire pump of Heron: A twin suction fotce piston pump for continuou water flow that was used in firefighting and continued to be used till recently identically.
- g- The hydraulic bellow: An ingenious machine for water pumping.

Ancient Greek and present world water technology

As it has been pointed out, the ancient technological developments have been considered as the underpinning of modern achievements.

Yet, this high technology had been for a long time forgotten, subjected to maturation, and it was only during the last two centuries that the contemporary technology revived it.

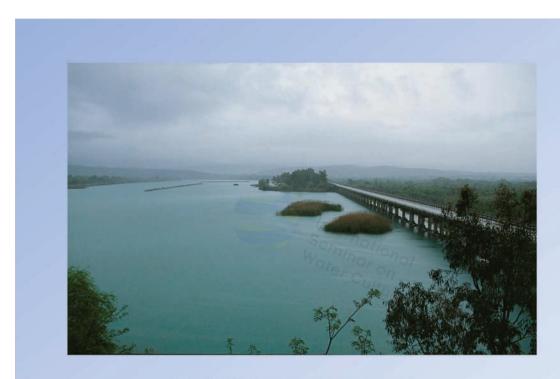

The western Technology however revived the Greek technology extending from robot servant of Philon to the cinema of Heron, and from the automatic clock of Ktesibios to the analog computer of Antikythera. This relation shows undouptedly the real influence of the ancient water technology on the modern one.

Figure 13:Artificial lake Kremasta (G. Fatouros with permission)

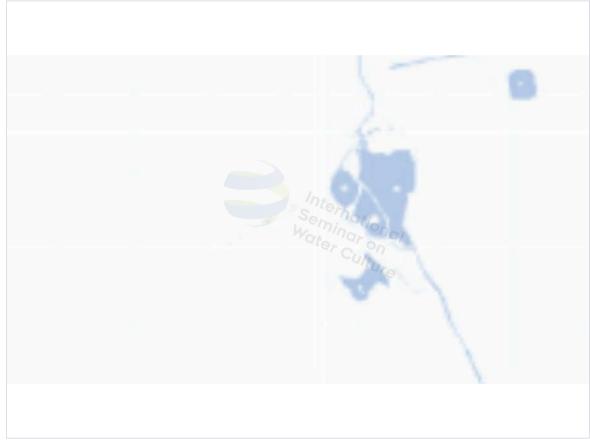
Artificial lake Kastraki (G. Fatouros with permission)

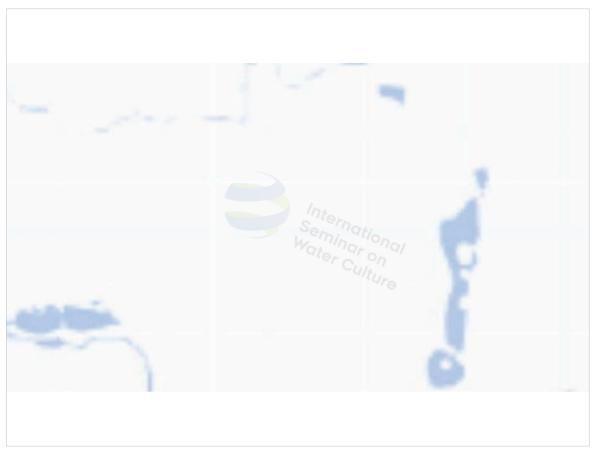
Artificial lake of Stratos (G. Fatouros with permission)

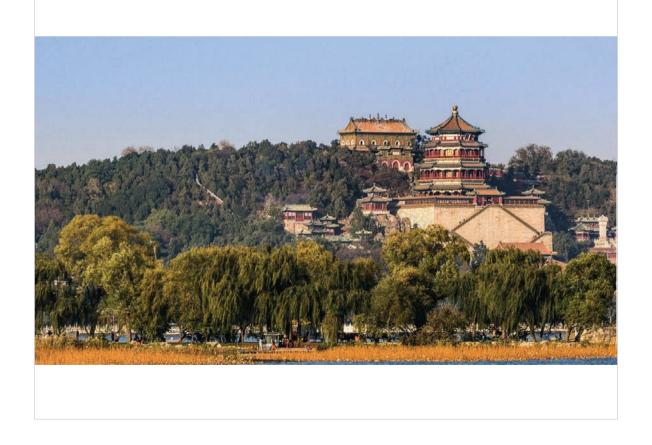
Conclusion

The study of the ancient water technology is of great importance because the inventions and innovations of the ancient Greeks as well as of other ancient civilizations contistitute the underpinning of the modern technological achievements.

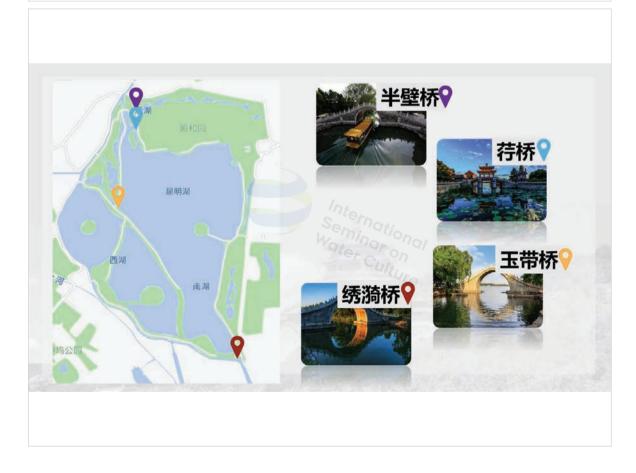
善治国者必重治水

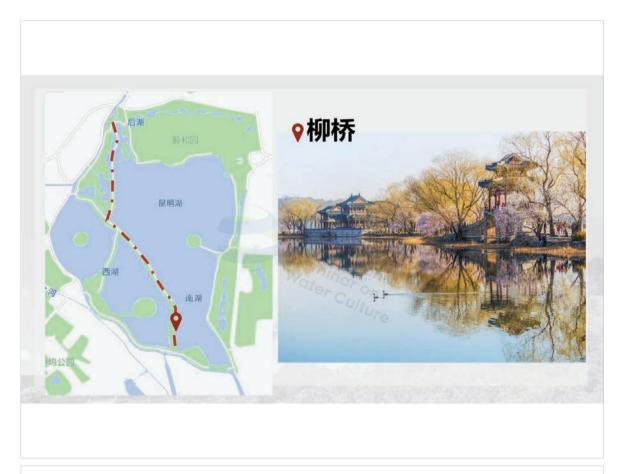


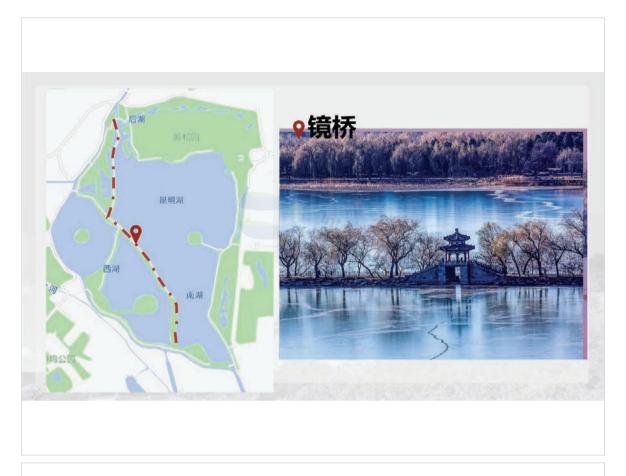


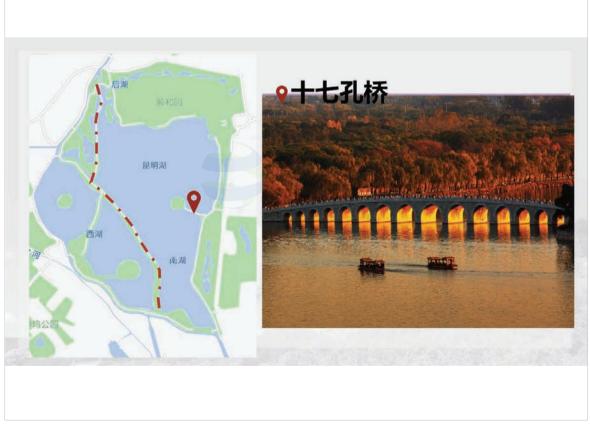


顾和园作为水利枢纽的重要作用 ◆ 2002年 南水北调中线工程的终点设在了颐和园团城湖。 ◆ 2021年 北京市公布了第一批水利遗产名录,共七处,颐和园昆明湖名列其中。

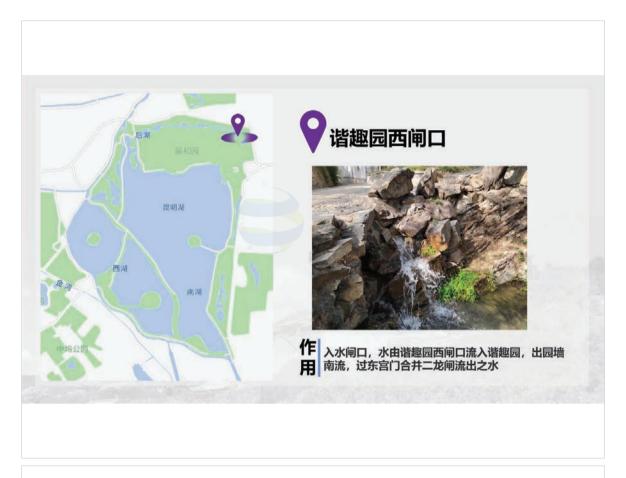


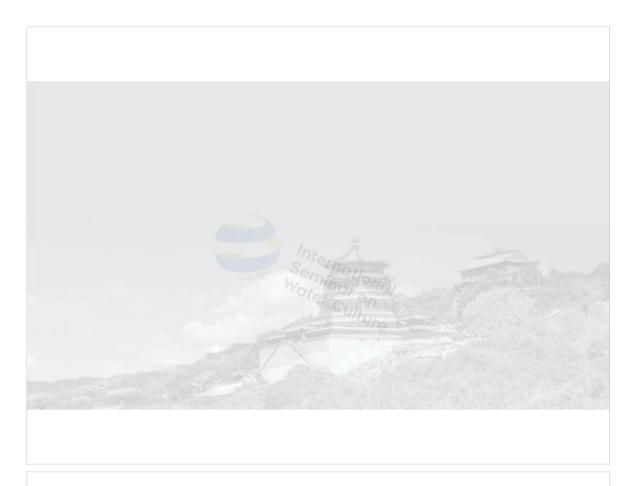












水利文化的传承与发展

遗产保护方面

- ◆成立颐和园世界文化遗产 监测中心
- ◆建立遗产监测预警平台
- ◆持续开展昆明湖水环境监 测和石桥、闸函等水利遗迹 的监测

遗产保护方面

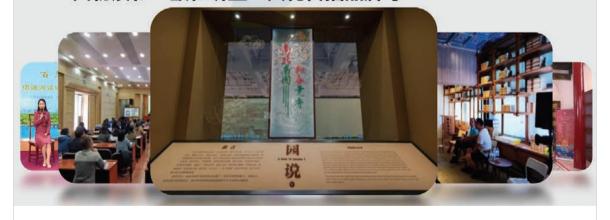
- ◆联合相关公园、科研单位共同 开展"三山五园水利文物遗迹 研究"课题
- ◆系统调研区域现存水利文物遗 迹情况
- ◆对水利文物进行保护型修缮

展示利用方面

◆ 举办了《明珠耀两河——西山 永定河、大运河文化带视角中 的颐和园历史文化展》

文物展览和文化传播

- ◆注重应用文物、图片、视 频展示颐和园及周边区域的 水利遗迹
- ◆打造"颐和园研究院"学术交流平台、"园说"系列文物展和"颐和讲堂"文化传播品牌等


文物展览和文化传播

◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等

文物展览和文化传播

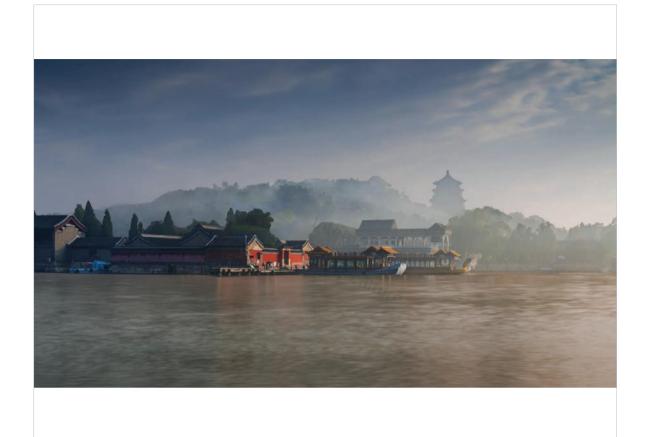
◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等

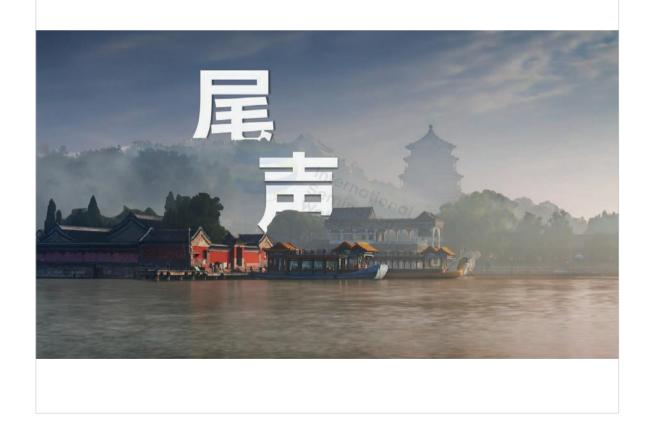
文物展览和文化传播

◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等

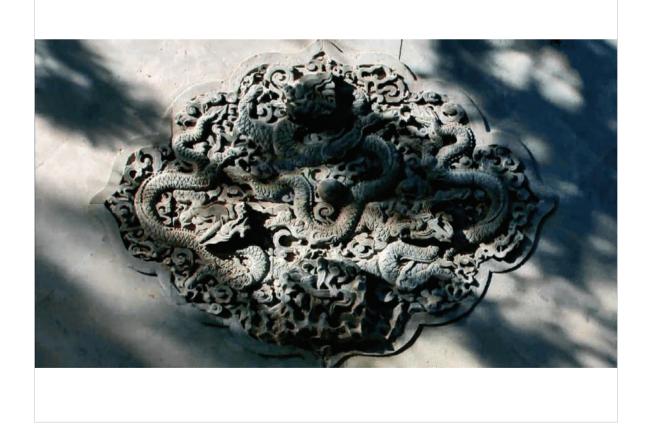
文物展览和文化传播

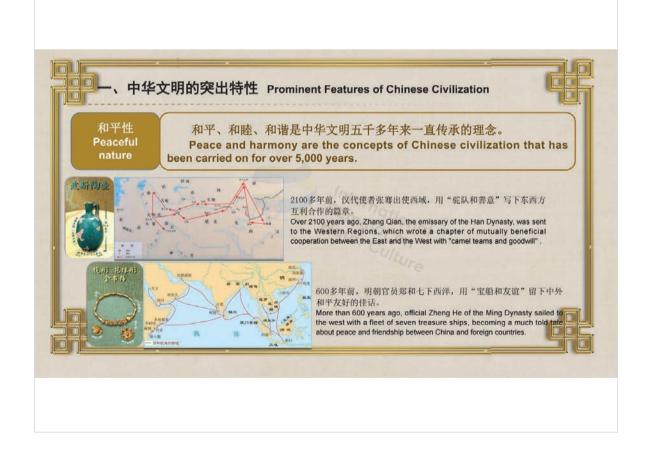
◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等


◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等



文物展览和文化传播


◆打造"颐和园研究院"学术交流平台、"园说"系列 文物展和"颐和讲堂"文化传播品牌等



二、中华文明探源工程及成果意义

The Project to Trace the Origins of Chinese Civilization and Achievements

陕西神木石峁遗址,以"中国文明的前夜" 入选2012年十大考古新发现和世界十大田野考古发现。(龙山文化)

The Shimao Site of Shenmu in Shaanxi was selected as one of the top ten archaeological discoveries by "the eve of Chinese civilization" in 2012 and the top ten field archaeological discoveries in the world. (Longshan

2001年正式提出。2004年,在全国范围内众多古文化遗址中, 主要在黄河流域、长江流域、辽河流域等地区,选定了一些中心性遗址进行考古发掘。

It was officially presented in 2001. In 2004, among the many ancient cultural sites throughout the country, some core sites were selected for archaeological excavation mainly in the Yellow River Basin, Yangtze River Basin, and Liao River Basin.

河南灵宝西坡遗址,是仰韶时代 庙底沟类型的大型文化遗址,被列入 中华文明探源工程六大遗址首选。 (仰韶文化)

The Lingbao Xipo Site in Henan Province, as a large one of the type of Miaodigou of the Yangshao culture, is listed as the first choice of the six sites of the project. (Yangshao Culture)

二、中华文明探源工程及成果意义

The Project to Trace the Origins of Chinese Civilization and Achievements

历经预研究阶段、第一阶段、第二阶段、第三阶段等4个 阶段,长达15年,以丰富的考古资料实证了中华民族5000年多 年的文明。

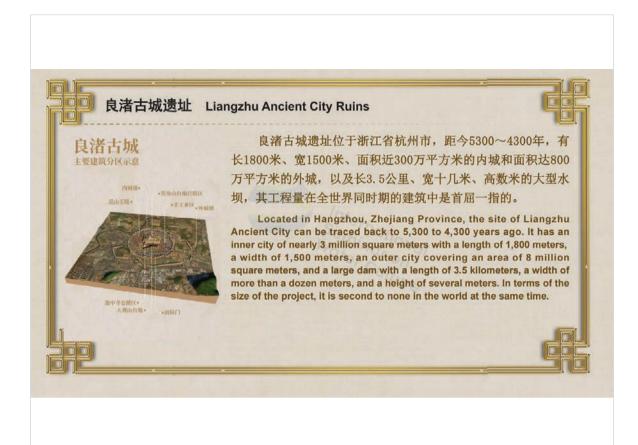
Four phases, namely the pre-study, the first, the second, and the third phase, of research in 15 years confirmed with rich archaeological data that the Chinese civilization continues for more than 5,000 years.

河南洛阳偃师二里头遗址, 中华文明探源工程首批重点六 大都邑之一。

The Erlitou site in Yanshi, Luoyang, Henan Province, one of the first six major city sites of the project.

河南郑州大师姑夏代城址,是中国已发现的唯一 一座二里头文化城址,填补了中国夏代城址考古的空白。

The Dashigu City of the Xia Dynasty in Zhengzhou, Henan, is the only city site of Erlitou cultural found so far in China, filling in the archaeological gap among the discoveries of Xia Dynasty city sites in China.



良渚古城遗址 Liangzhu Ancient City Ruins

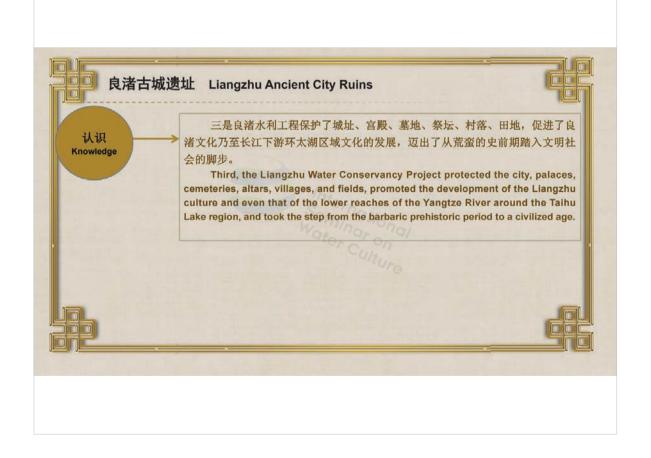
良渚古城外围水利工程是人类历史上最早的复杂的大型水利设施, 是以自然山体为依托,在两山谷口之间,以南北为走向,用黄土夹杂草裹泥修筑的两组堤坝。

The peripheral water conservancy project of Liangzhu Ancient City is the earliest complex large-scale water conservancy facility in human history. Based on the natural mountain body, it was located between the two valley mouths from the north to south, consisting of two sets of dams built with loess mixed with grass-wrapping-mud.

其伟大之处在于它是一个中小流域性水利系统,将良渚古城外围的水利工程与古城内外水网相联通,发挥其防洪、拒咸蓄淡、运输、调水、灌溉等功能,成为迄今考古发现的东亚地区最早国家形成的重要标志。

Its greatness lies in the fact that it is a small and medium-sized basin-based water conservancy system, connecting the peripheral water projects with the networks inside and outside the city to serve for flood prevention, fresh water storage, transportation, water diversion, irrigation and others. It becomes an important symbol of the formation of the earliest countries in the East Asia that have been archaeologically discovered so far.

草裹泥是将泥块(淤泥或黄土)用草料(芦苇或茅草)包裹,再用芒条、苇条或篾条绑扎,制作成的水工 构件。春秋战国时期在黄河河工工程、都江堰水利工程


构件。春秋战国时期在黄河河工工程、都江堰水利工程中出现了类似的河工或水工构件和建筑。良渚文化将水利工程建筑及结构材料的起源向前延长了两千年。

Grass-wrapping-mud is a hydraulic component made by wrapping clod (sludge or loess) in grass (reed or thatch) and tying it with awns, reed canes or bamboo strips. Similar components were found in buildings and water conservancy projects such as the Yellow River engineering project and the Dujiangyan Water Irrigation Project during the Spring and Autumn and the Warring States Period. The Liangzhu Culture extended the origins of building and structural materials for water conservancy engineering for another two thousand years.

良渚古城遗址 Liangzhu Ancient City Ruins

风起东方,钱江潮涌,弦歌浩荡。2023年9月23日晚, 在第19届亚洲运动会开幕式上,来自良渚古城遗址的"文明 之光",点燃象征亚洲大团结的体育之火,源远流长的中华 文明与激情洋溢的体育盛会交相辉映。

The wind rises in the east, the tidal surge of the Qianjiang River, the mighty string song. On the evening of September 23, at the opening ceremony of the 19th Asian Games, the "light of civilization" from the ancient ruins of Liangzhu ignited the fire of sports, which symbolized the great unity of Asia. The ancient Chinese civilization and the passionate sports event added radiance to each other.

陶寺遗址 **Taosi Site**

陶寺遗址 Taosi Site

陶寺遗址,位于山西省襄汾,距今4300年,是中国黄河 中游地区以龙山文化陶寺类型为主的遗址, 是中原地区龙山文 化中规模最大的遗址之一。有规模空前的城址、与之相匹配的 王墓、世界最早的观象台、气势恢宏的宫殿、独立的仓储区、 官方管理下的手工业区。

Located in Xiangfen, Shanxi Province, the Taosi Site can be traced back to 4,300 years ago. As a site representing Longshan Culture in the middle reaches of the Yellow River, it is one of the largest in the Central Plains. It has an unprecedented scale city site, matching royal tombs, the world's earliest observatory, magnificent palaces, independent storage areas, and handicraft districts under official management.



